
Distributed Test Case Generation using Model Inference

Stewart Grant, Ivan Beschastnikh
University of British Columbia

1 Introduction

Developers of distributed systems strive for correctness by
writing tests. Developing these tests is a difficult and error
prone task which spans the life of a system. In spite of de-
veloper effort, complicated bugs frequently sneak through
and are admitted into production systems.

State-of-the-art techniques for achieving correctness
are widespread in their approaches and effectiveness. Ver-
ification aims to mathematically prove systems correct.
Various specification languages leverage powerful model
checkers to compute these proofs [7, 6]. Projects such as
Verdi and IronFleet [8, 5] have demonstrated the utility
of these techniques by developing fully verified systems.
These proofs however require expertise, and effort.

Conversely, fuzz testing provides a low cost, low ef-
fort black box approach to improving system durability
by automatically generating new test cases [10]. Fuzzers
pointed at network endpoints allow developers to stress
their software without writing tests. While efficient, fuzz
testing only catches early bugs, and admits complex bugs.

In the middle are transparent model checking proce-
dures such as MODIST [9]. Given a specification of cor-
rect behaviour (e.g. invariants), such tools exercise real
systems, scheduling and interleaving distributed events
using a centralized controller. Such techniques are useful
for identifying and replicating complex distributed bugs.
But, error states are reached using unguided brute force
search! The time to detect bugs using such frameworks
is long, and while detected bugs can be complex, they are
often errors reachable shortly after initialization

Due to their low effort and high utility, tools such as
MODIST are extremely powerful, but they can be largely
improved. We posit that brute force search of bugs de-
tection can be improved by extracting program specific
information. Specifically that dynamic traces of program
state can be used to model a systems behaviour, and guide
transparent model checkers towards deeper bugs.

In this work we propose a novel technique for synthe-
sizing models of distributed systems using dynamic state
based analysis. Our modelling and checking algorithms
are designed to analyze several GB’s of logs generated
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Figure 1: Dara pipeline: traces, variable IDs, and invari-
ants are FSM model input. Z3, and Daikon refine, and add
constraints. Refined models are translated to Promella for
model checking with SPIN.

by real systems. Figure 1 overviews Dara’s model gen-
eration pipeline. Dara builds state machines from logs,
merges states to reduce complexity, and infers state prop-
erties to reduce false positives. Dara use off the shelf
model checkers to exercises models and output approxi-
mate traces which are likely to, but may not correspond to
real bugs. These approximate traces are then passed to a
transparent model checker which validates, or invalidates
potential bugs.

The Dara1 tool is an implementation of our analysis
tool-chain. The tool is written in Go, and analyzes on
systems written in Go.

2 Challenges
Trace Collection Dara requires large amounts of pro-
gram data to construct an accurate program model. Traces
which capture diverse system behavior increase model ac-
curacy. Aforementioned test suites, fuzzers, and transpar-
ent model checkers are each viable sources of program.

System Modelling We propose that an approximate
system model can be extracted with a traditional test suite,
and profiling, from observed state. Our approach merges
system logs into a finite state machine (FSM). Each FSM
state is defined by a unique combination of concrete vari-
able values extracted from a log. State transitions (edges)

1http://www.github.com/wantonsolutions/dara
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are defined by the sent or received messages, or important
local events (syscalls, timers).

Model Accuracy A model from dynamic traces is ap-
proximate. Atomic steps in time must be defined only on
the visible traces. Further, as a model becomes more pre-
cise (includes more variables) the state space of the model
grows exponentially. Choosing variables to model is crit-
ical. The omission of a key variables produces inaccu-
rate models. Such cases increase the false positives Dara
generates. We make the observation that variables which
determine program control flow are critical to a programs
state, such variables are identified using static source code
analysis. Post analysis false positives are fed back and
used to identify key variables.

State Space Explosion Unique combinations of vari-
able values compose unique states in an FSM. As such,
each modelled variable expands the space of the FSM by
the count of its unique logged values. We leverage the
Z3 SMT solver as a program synthesis engine to collapse
FSM state size as follows [3]. Pairs of nodes connected
by edges are passed to Z3 as input-output examples of
functions. If Z3 finds a set of operations which match all
observed input-output examples, the unique instances of
the variable are removed, and replaced with operation on
edges which capture their state transfer. This drastically
reduces FSM state space.

False Positives Inference with Z3 has the potential to
generate incorrect operations if insufficient input-output
examples are present in the logs. To detect, and reduce
such errors we leverage Daikon to infer likely data invari-
ants [4]. Each FSM node is composed of a set of log in-
stances, we run Daikon on these instance to collect invari-
ants on the node. Post model checking variable values are
compared with collected invariants. If many invariants are
invalidated (a high deviation in values from the collected
logs), it is strong evidence that the inferred operations (or
model itself) were incorrect. In such cases the model is
recomputed including variables omitted from the prior in-
stance of the model.

State Exploration Dara converts inferred models to
Promella [6], and uses the SPIN model checker. Users
supply a configuration of state invariants to SPIN. SPIN
outputs traces of the approximate model that violate spec-
ified invariants.

Validation Model checking an approximate specifica-
tion implies that flagged bugs may be false positives.
Correlating inferred bugs with real bugs manually is
challenging and laborious. A final contribution of our
work is a functional mapping between inferred bugs, and
real traces. Inferred bugs produce traces which can be
scheduled and replayed using Dara’s transparent model

checker.

3 Prototype & Future Work
Our current prototype consists of 5K lines of Go, and
includes facilities for generating FSMs, and generating
likely traces with SPIN. We have applied Dara to a 200
line implementation of Dining philosophers and success-
fully identified fairness violations not present in existing
logs. Our project lacks a transparent model checker, re-
quiring that these bugs were verified manually. We are
currently in the development of an open source checker
for Go programs.

In the future we plan to extend our analysis to larger
distributed systems with more complex properties. Our
current techniques have only been applied to systems con-
sisting of less than 500LOC symmetric systems.

Our target is to analyze, and find crucial bugs consen-
sus algorithms mainly blockchain (BTCD [1]) and raft
(ETCD [2]). Blockchain martians a large amount of dis-
tributed state in the from of transaction history which re-
quires a precise model to simulate. Rafts algorithm main-
tains less state, but requires the precise modelling of a
complicated protocol with nontrivial edge cases.
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