
A

B

C

G

FE

D

A

B

C

G

FE

D

A

B

C

G

FE

D

A

B

C

G

FE

D

A

B

C

G

FE

D A

B

C

G

FE

D

A

B

C

G

FE

D

Instrumented Program

Modified Go Runtime

Instrumented Program

Modified Go Runtime

Communication Layer

OS (Linux)

Global Scheduler
Failure Simulation

Virtual Clock
Global Assertions
GoRoutine State

Transparent Model Checking Design

Abstract Schedule

• Model checker schedules threads via global scheduler
• Go Runtimes acts as an interposition layer between programs and the OS
• Non-determinism is captured e.g., Messaging & system calls
• Centralized scheduler deterministically replays abstract schedules
• Infeasible schedules generate new behaviour and refine abstract model

• Model Check etcd (raft KV store), btcd (BTC miner)
• Evaluate state space exploration vs MODIST
• Automatic detection of state variables
• Extend Model checking to temporal invariants

Ongoing Work Open source repository

github.com/wantonsolutions/dara

Checking the
correctness of

distributed
systems is

HARD!

Developer Difficulties:
• Massive state space:

 low testing coverage
• Non-Deterministic Bugs:

 inexplicable crashes
• Partial Failures:

 complex corner cases

Stewart Grant
Ivan Beschastnikh

Two approaches to model checking systems
1) Abstract: Check abstract system model e.g. SPIN
 Fast & Deep state expiration, implementation can admit bugs.

2) Concrete: Check system implementation directly e.g. MODIST
 Sound, but Shallow state space exploration, some deep bugs go undetected.

Dara : Combine both approaches, infer model from program traces, check abstract bugs with SPIN.
Validate abstract bugs by replaying trace with transparent model checker. Iteratively refine abstract
model using new traces discovered during replay.

Distributed Test Case Generation using Model Inference with Dara

Source Code

Traverse program AST’s and inject
logging to capture messages, and
specified variables

Variable
Names

Source Code’

Run Test Suite State
 Traces

Model Inference Model Checking
Invalid

Abstract
Traces

Process
State Machine

Transparent Model
Checking

Global
Scheduler

Interposition

Interposition Interposition

Instrumentation

Invariants
(Global assertions)

Int critical = 0

net.Write(msg)

Int critical = 0

net.Write(msg)
Log(msg)

Track(&critical)

Run tests to generate a
bootstrapping set of logs

for the model inference
engine.

Compose state traces into
a finite state machine (FSM).
Inject invariants into FSM.

Model check FSM with SPIN.
Convert fail-stop, deadlock,

and invariant-violating traces
to schedules.

Replay schedules, and control
IO. Report replicated bugs.

Send non-failing traces back
to model inference.

Dara Model Checking Workflow Non-Failing Traces

Buggy
Traces

Instrumented
Source

Concrete States

Abstract
State

Receiving
State

Sending
State

Message
B A

Process A

Process B Process C

Abstract Model Inference

Traces

Global
Assertions

System
Model

Z3

Daikon

States

Edges

Model
Refinement

Operations

Invariants

Promella
Model

To
SPIN

• Program state traces are converted into an FSM
• Nodes are unique instances of variable values
• Edges are events: messages & syscalls
• Z3 collapses FSM by inferring operations over edges
• Daikon invariants: heuristic to measure abstract-concrete traces gap

Model Inference

• Testing: Unit, Integration, Stress
• Modeling Languages: TLA+[TOPLAS’94], SPIN [ECBS’05], COQ [INRIA’04]
• Verification: IronFleet [SOSP’15], Verdi [PLDI’15], Chapar [POPL’16])
• Transparent Model Checkers: MODIST [NSDI’09],[SOSP’11], CHESS [OSDI’08]

Related Work

