
In-network Contention Resolution for Disaggregated Memory

Stewart Grant and Alex C. Snoeren
UC San Diego

Abstract

Passive remote memory remains the holy grail of dis-
aggregation. Most existing systems for disaggregated
memory either use remote memory simply as a backing
store, or design special-purpose data structures that re-
quire some amount of processing co-resident with the re-
mote memory to manage and apply updates. The few
proposals for truly passive remote memory perform well
only with read-mostly workloads, rapidly deteriorating in
the face of even low levels of write contention. We pro-
pose to leverage in-network devices (specifically, a pro-
grammable top-of-rack switch) to serialize remote mem-
ory accesses and resolve any write conflicts in flight. Our
prototype is able to completely avoid write contention
in the recently published Clover disaggregated key/value
store, delivering a performance boost of almost 50% on
our testbed under a mixed read/write workload.

1 Introduction

Major industrial players are increasingly embracing re-
source disaggregation, where memory and storage are
physically separated from computation. This segregation
provides numerous opportunities for increased scalabil-
ity, power efficiency, and cost savings, but also raises
fundamental performance bottlenecks [9]. Disaggregat-
ing primary storage (i.e, byte-addressable main memory)
remains an unsolved challenge given the dramatic (e.g.,
20×) increase in access latency when moving from on-
die cache (≈ 50 ns) to network-attached options (of-
ten on the order of 1 us). As a result, many previ-
ous systems use application-transparent remote memory
only as a form of backing store for infrequently accessed
data [4, 10, 16, 21].

Alternatively, others have designed high-performance,
special-purpose distributed data structures for use over
RDMA [7, 11, 12, 14, 17, 18, 19, 20]. These non-
transparent systems trade generality for performance;
handling millions of operations per second. They all re-
quire a CPU be co-resident with remote memory to act as

an RDMA coordinator. This design paradigm of CPU/re-
mote memory collocation is at odds with the goals of
disaggregation, demanding new approaches for remote-
resource coordination. Researchers have considered a va-
riety of trade-offs along this spectrum [2, 5, 6, 8, 9]. Ide-
ally, systems could leverage what is sometimes called pas-
sive remote [22] or far [2] memory, which does not have
local computation attached. Rather, all accesses are re-
mote, using hardware primitives like one-sided RDMA.

Relatively few systems have been proposed to leverage
passive remote memory, and those that have [3, 22] are
designed to support read-heavy workloads on shared re-
sources. Their reason for avoiding writes is fundamen-
tal: ensuring consistency in the face of concurrent writes
is expensive. Lock acquisition and revocation requires
multiple round trips which would devastate throughput.
Conversely, optimistic schemes break down in the face of
contention and typically fall back to even more expensive
recovery operations.

One recent system, Clover [22], attempts to decrease
the cost of conflicts by separating (potentially contented)
metadata operations from the memory updates them-
selves. While effective for read-mostly workloads, Clover
simply delays the inevitable, and metadata contention
quickly becomes the bottleneck at even modest update
rates. Indeed, published results show that Clover’s
throughput drops by more than a factor of four when mov-
ing from a read-only to 50%-write workload [22, Fig. 7].
The key issue with designs like Clover is the requirement
that individual clients resolve conflicts themselves, result-
ing in extremely expensive operations in the worst case.
The authors report that Clover requires five round trips
to remote memory in the 99th-percentile case with just a
5%-write workload [22, Table 2].

The obvious alternative to completely distributed con-
tention resolution is to have a central coordinator that
manages remote memory accesses. Prior work has sug-
gested the potential benefits of such a distributed memory
controller [5], but to our knowledge none have yet been
built or proposed with existing hardware. The authors of
Clover evaluate a commodity server in such a role (which
they refer to as pDPM-central) and discard it as a scal-

1



ability bottleneck that also increases the number of net-
work hops between a node and its remote memory [22].
While an end host is indeed ill-suited for this purpose, an
in-network device, on the other hand, could be an ideal
location to provide such a service: it is, after all, on-path,
and, if suitably located, may be in a position to observe—
and even avoid—conflicting access requests before they
reach remote memory.

In this paper we explore the potential for a pro-
grammable top-of-rack (TOR) switch to mediate remote
memory accesses. We observe that if all remote reads and
writes are performed within a single rack—which is often
the case in existing RDMA deployments—the TOR is in a
unique position to observe—and serialize—remote mem-
ory operations. Moreover, if the TOR is able to parse and
modify requests in flight, it can even resolve conflicts be-
fore they reach the remote memory, effectively recovering
from optimistic write failures “for free.” Finally, if clients
retain the ability to resolve conflicts themselves (albeit at
a significant cost to performance) the TOR can serve sim-
ply as a form of soft-state performance-enhancing proxy;
conflicts that it fails to avoid result in decreased perfor-
mance as opposed to incorrect semantics.

As a proof of concept we implement a prototype
software-based TOR that interposes on the Clover pro-
tocol and resolves write conflicts in flight. Our conflict-
detection algorithm uses knowledge of Clover’s metadata
structures to detect write conflicts using a small amount
of cached state (only a few bytes per key/value pair).
Conflict resolution is performed directly on the in-flight
RDMA packets by steering their destination virtual ad-
dresses to the most up-to-date location in Clover’s key/-
value store. This technique is complete and safe: it re-
solves all read and write conflicts for keys that it caches,
and reverts to native Clover performance for those it does
not. As in-network SRAM is expensive we show that
our technique can trade completeness for memory sav-
ings while still achieving performance gains. Our prelim-
inary evaluation with a 50/50 read/write workload shows
throughput gains of 1.42× when caching all keys, and
gains of 1.34× when using only 128 bytes of in-network
memory to correct conflicts for the 8-most-popular keys
in a Zipf request distribution.

2 Background
While our insight and approach is general, in order to
demonstrate its practicality we prototype it in the context
of Clover [22], a disaggregated key/value store. Hence,
we begin with a brief overview of the relevant aspects of
Clover’s design for the uninitiated.

Figure 1: System overview, Metadata, client, and Re-
mote Memory servers are Clover components. Our re-
mote memory coordinator is located on a centralized TOR
interconnecting the clover components.

2.1 Append-only updates

Clover maximizes performance by storing data in a ver-
sioned list, dubbed a chain by the authors, which al-
lows for fully asynchronous non-blocking reads and O(1)
writes which succeed opportunistically. Writes are issued
by clients as atomic append operations to the end of the
chain, the structure of which is illustrated in Figure 1.
Each entry in the chain contains a pointer to the next entry
with the pointer at the tail of the chain set to NULL. Clients
keep cached pointers to the current tail of the chain for
each key allowing them to issue lock-free RDMA reads
directly to passive remote memory servers using the ad-
dress they believe to be the current tail. Clients can in-
dependently confirm their reads are fresh by ensuring the
value returned has a NULL next-update pointer.

Write (i.e., append-to-tail) operations, on the other
hand, require two steps in the common case. First a writer
issues a lock-free RDMA write to store the new value up-
date to an uncontended portion of remote memory. The
second operation optimistically attempts to make the up-
date globally visible by atomically committing it to the
end of the chain. Specifically, the writer issues an RDMA
compare-and-swap (c&s) operation to the old tail to re-
place its (presumably still NULL) next-update pointer with
the address of the new value. If successful, it then updates
the metadata sever with the new end-of-chain address.

The Clover authors compare their opportunistic ap-
proach with a variety of different system architectures
including one which centralizes metadata on the datap-
ath (pDPM-central). They find that their opportunistic
approach achieves extremely high throughput on read-
heavy workloads, performing similarly to raw RDMA
reads. In contrast pDPM-central bottlenecks at far lower
throughput. In the presence of writes Clover’s through-

2



put decreases due to contention while the performance of
pDPM-central remains the same as it resolves all concur-
rent write conflicts in the data path.

2.2 Conflict handling

If multiple clients attempt to update the value concur-
rently, each will succeed in their first write to their pri-
vate region of remote memory but then issue conflicting
RDMA c&s operations to the end of the shared chain.
The race is resolved at the remote memory location of the
previous update in the chain: only the first c&s opera-
tion will succeed; all subsequent operations will fail be-
cause rather than finding a value with a NULL next-update
pointer, they find the now (at best) penultimate value in
the chain which points to the update issued by the client
that won the race. During this two-RTT operation any
concurrent write to the same key will cause a conflict.

If a client’s write—or read—fails because it used a stale
tail pointer the client concurrently requests the new tail
address from the metadata server and iteratively traverses
the chain themselves to find the current end in a processes
known as chain walking. (It is insufficient to just consult
the metadata server because it is updated lazily.) Failed
writers must then issue a new c&s operation at the up-
dated end of the chain to append their pending update. Of
course, the reissued c&s is subject to the same race condi-
tion as many writers may be executing concurrently. This
pointer-chasing reconciliation algorithm must be run in-
dependently each time a conflict occurs. While concurrent
read operations will not prevent a write from succeeding,
a reader that loses the race with a c&s operation will need
to issue another RDMA read to the new address to obtain
the updated value. On write-heavy workloads these race
conditions happen frequently leading to large and unpre-
dictable tail latencies [22, Table 2].

3 In-network conflict resolution

We propose a middle ground between a fully distributed
and a centralized approach. Our insight is that by us-
ing data-structure-specific knowledge and caching meta-
data in the network, conflicting writes can be resolved
at line rate on the data path using only a small amount
of state. We use Clover as a platform to prove our con-
cept and design a middlebox algorithm which intercepts
Clover’s RDMA read, write, and c&s requests, caches a
small amount (64 bytes per key) of structural metadata,
and resolves write conflicts by adjusting the virtual desti-
nation address of contending c&s guards.

3.1 Resolving concurrent requests
Our key observation is that a top-of-rack (TOR) switch
necessarily serializes all RDMA operations destined to
any particular remote memory location, since physical
memory is hosted on a single server, and the switch is
in charge of ordering packets destined to each of its out-
put ports. (We leave the engineering details involved in
addressing multi-homed servers, corrupt packets, node
failures, and the like to future work.) Given an ordered
stream of RDMA operations, it is straightforward for an
in-network device to detect stale c&s operations. What’s
more, if the TOR maintains just a modest amount of state,
it can resolve conflicts in flight. Specifically, it suffices to
redirect any c&s operations that “lost their races” to the
address of the current (or soon-to-be) end of the chain.

In the particular case of Clover, we cache the current
end of the chain for each key in Clover’s key/value store.
This requires O(n) state where n is the number of keys.
For a key/value store consisting of ten-thousand keys we
need to store a key mapping and value for each (both 64
bits) resulting in a total in-network storage of 80 KB. Note
that this represents only a small portion of the metadata
Clover maintains at its metadata servers which contains
all versions on the chain. Only the end of the chain is
required to resolve write conflicts.

3.2 Modifying RDMA in flight
Interposing on the RDMA protocol, however, is non-
trivial. One approach (evaluated in Clover as pDPM-
central [22]) employs an RDMA-enabled middlebox that
sets up connections between itself and clients and another
set of connections to the memory servers. The middle-
box can then reorder, rewrite, and relay RDMA requests
from clients to the appropriate chain locations. This solu-
tion is impractical for a TOR-based solution both because
existing switches lack the ability to establish RDMA con-
nections, and, more importantly, because the authors of
Clover demonstrate it to be a performance bottleneck.
We avoid both shortcomings by transparently intercept-
ing RDMA connections established directly between the
clients and remote memory servers without explicitly par-
ticipating in the RDMA protocol.

In our approach, the TOR records the virtual addresses
used in any RDMA writes made by Clover clients. These
writes are marked as outstanding; i.e., they have been
issued to remote memory, but have not yet been made
visible in Clover because they are not yet connected to
Clover’s per-key chain. As described above, following
the completion of an outstanding write, clients issue an
RDMA c&s to the end of the chain to make their up-

3



date visible atomically in Clover, and we also track the
last c&s issued for each key. In a successful update, the
c&s operation will adjust the next-update pointer to the
location of the most recent (outstanding) write, thereby
committing the write.

Our algorithm detects the existence of a conflict by
noticing when there are multiple outstanding writes for
a given key. The current write for each client is tracked,
when two clients have outstanding writes to the same key
a conflict has occurred. When a c&s operation arrives,
we inspect the virtual address it is trying to update. If
it points to an old tail, its virtual address is modified by
the TOR (without the knowledge of the issuing client) to
point to the true tail of the list. The cached latest version
of the key is then updated to point to the address to which
the c&s was directed. Clover clients learn the updated
locations using their default read algorithm.

3.3 Prototype

Our prototype is implemented in a software switch using
DPDK, but is designed to have low memory and com-
putational overhead making it ideal for network devices
such as programmable switches. RDMA packets are not
intended to be modified in flight, and care must be taken
not to corrupt them. RDMA invariant CRCs (ICRC) are
calculated at the time of sending and are designed to en-
sure the integrity of the payload. When we modify c&s
packets their ICRC must be recalculated or the packet will
be rejected by the receiving NIC. FPGA implementations
of RDMA ICRC have been built in the past [15]; the re-
quired CRC calculation is identical to Ethernet CRC, with
some additional header components and field masking.

4 Evaluation

Our testbed consists of four machines, where a single
server plays the role of both Clover memory server (MS)
and metadata server (DN). Two machines are configured
as Clover clients, and the last hosts our DPDK-based
TOR. Physically, the machines are identical: each is
equipped with two Intel Xeon E5-2640 CPUs and 256 GB
of main memory evenly spread across the NUMA do-
mains. Each server communicates using a Mellanox
ConnectX-5 100-Gbps NIC installed in a 16x PCIe slot
interconnected via a 100-Gbps Mellanox Onyx Switch.
All Clover servers are configured with default routing set-
tings: clients send directly to the metadata and data server.
We install OpenFlow rules on the Onyx switch to redirect
the Clover RDMA traffic to the DPDK “TOR”.

2 4 8 16 24 32 40 48 56 64
Threads

0

200

400

600

800

1000

1200

1400

KO
P/

s

Clover
Write Redirections

Figure 2: Default Clover throughput vs. Clover with
write conflict detection and correction turned on

4.1 Conflict resolution

We test the performance gains of resolving write conflicts
using our caching TOR. Clover clients are configured to
run a YCSB-A benchmark, 50% read, 50% write for 1
million requests. Requests for keys are based on a Zipf
distribution generated with an s value of 0.75. In each ex-
periment the number of client threads is increased which
in turn increases the load on the system. Clover requests
are blocking; thus, the throughput is a factor of both the
request latency and the number of client threads. Fig-
ure 2 compares the performance of native Clover (plotted
in red) against our in-network conflict resolution (hatched
blue).

As the number of clients increases so too does the prob-
ability that two client threads will make concurrent writes
to the same key. The number of conflicts resolved in
flight directly correlates to throughput improvements as
each successful request reduces the multiple round trips
necessary to resolve write conflicts. Our current imple-
mentation provides a 1.42× throughput improvement at
64 client threads.

Throughput is limited by the scale of our experimen-
tal setup, i.e more client machines can produce higher
throughputs. The number of in-flight conflicts is also
impacted by the Zipf distribution. We use a Zipf of
0.75, however a Zipf of 1.0 would result in a distribution
skewed towards fewer keys, which in turn results in more
conflicts. Moreover, we find that Clover’s current design
leads to hardware contention on the servers themselves. In
particular, ConnectX-5 NIC performance degrades as the
number of RDMA c&s operations to the same memory
region across different queue pairs increases [13]. As our
design eliminates the need for c&s operations on cached
keys, future work will seek to reduce or eliminate c&s

4



1 8 64 512 4K 32K 256K
Key Space

101

102

103

104

105

106

107

108
By

te
s Barefoot Tofino 2 (64MB)

Key Caching Memory

Figure 3: Cost of caching metadata in-network vs. key
space size

operations by replacing them at the TOR with RDMA
writes.

4.2 Memory consumption
Resources on networking hardware are scarce. High-end
SoC SmartNICs have just a few gigabytes of RAM, and
programmable switches have only megabytes of SRAM.
Moreover the use of this memory is not free: using mem-
ory for any purpose other than buffering packets has a
direct performance cost. The metadata we cache in net-
work is minimal: we only cache the virtual address of
the last write per key, as well as the last key written per
client. Clients are not explicitly known to our middle-
box and are identified at runtime by their QP. Tracking
clients in this way is necessary to detect write conflicts in
Clover. This overhead could be eliminated by explicitly
adding key information to c&s requests. Figure 3 shows
the memory overhead as a function of keys. Note that
100K keys can be supported using 2.5% of the available
memory (64 MB) on a Barefoot Tofino 2 programmable
switch [1].

Hot keys are the most likely to contribute to conflicts.
We test the effect of caching only hot keys by restrict-
ing our in-network cache to track and resolve conflicts on
only the top-N keys. In this experiment RDMA requests
for keys which are not cached pass through our DPDK
TOR without modification; conflicts are resolved using
Clover’s existing reconciliation protocol. Figure 4 shows
the throughput for 64 client threads when caching a vary-
ing number of keys out of a total key space size of 1024
keys. The request distribution is Zipf(0.75), therefore the
vast majority of conflicts occur on the top-eight keys. The
in-network memory requirement is 128 bytes, which re-
sults in 1.3× throughput improvement.

0 1 2 4 8 16 32 64 128 256 512 1028
Cached Keys (top-N)

0

200

400

600

800

1000

1200

1400

KO
P/

s

Default Throughput

Figure 4: Performance as a function of keys cached.
Caching a few of the top-N keys provides the greatest
marginal throughput benefits.

5 Discussion and future work

In our approach the switch updates its memory prior to
the RDMA packet landing in remote memory. This op-
eration is safe under the assumption that no packets are
reordered after egress from the switch and that all op-
erations are successful. If a c&s packet updates switch
memory, and then is rejected by the NIC or end host a
reconciliation of memory must take place. The indication
to the switch that a failure has occurred is an RDMA c&s
NACK. When this occurs the switch can dump all of its
soft state and reset. This will cause the Clover protocol to
revert to its default chain walk to learn new values. Our
approach requires only a single successful c&s operation
per key to rebuild its cache.

Additional performance. Despite our significant per-
formance gain, there are several more optimizations that
could be made in a Clover-specific design. As observed
during our evaluation, compare-and-swap operations bot-
tleneck quickly on existing hardware when locking is ap-
plied across queue pairs [13], limiting the maximum per-
formance of systems that rely on it as a guard. We are ex-
ploring two potential approaches for reducing NIC-based
lock contention: 1) Remap keys to QPs in flight. Cross-
QP locking can be avoided if all requests to a shared re-
mote memory address arrive on the same destination QP.
2) Compare-and-swap is not required for requests handled
by our algorithm as they are serialized. These guarded
write operations can be converted to regular writes by re-
placing a few RDMA header fields. This approach would
allow full-speed operation throughput with zero locking.

Moreover, our current implementation concentrates of
fixing write contention, however there is no limitation

5



which prevents us from gaining a performance boost on
reads. The same RDMA cache could be used to steer
reads which are issued by clients with stale information.

Alternative datastructures. While our initial explo-
ration has focused explicitly on Clover and its append-
only key/value chain structure, our approach is not lim-
ited to a particular datastructure nor only associative op-
erations. More complex structures can be supported, but
the choice of structure must be made with care. For
our caching approach to resolve metadata conflicts in-
network, it requires enough information to enforce remote
datastructure integrity invariants. Invariants such as or-
dering, or maintaining a balance in a tree require more
metadata and computation to enforce than appending to
the tail of a list. We plan to investigate data structures
which have the ideal property of requiring a small amount
of metadata (ideally O(log n), or O(log log n)) to main-
tain their structural invariants while also supporting more
operations, such as range queries.

The more complicated the structural invariants are to
maintain, the greater the information which must be
cached; for example an ordered list. To illustrate the
additional complexity of maintaining order consider how
clients could perform inserts. First, like Clover, clients
could write their entry to a private memory region. Sec-
ond, two pointers must be written, one which points to the
next item, and another from the prior item to the newly
written one. The client could issue the writes itself, how-
ever when the insert occurs it would need to traverse part
of the list to ensure that the result had been inserted to the
correct location and collect a lock on both the prior and
successor items. Naively enforcing the ordering invariant
requires that the switch cache the entire list.

We are exploring the class of data structures which have
either weak structural invariants, or those which only cost
O(1) to check. Additionally some data structures amor-
tize the cost of operations which require complex invari-
ants. For instance, rather than storing an ordered list, us-
ing a partially ordered list with fast accesses which can be
periodically transformed with expensive operations to be
consistent.

Deployability. Designing and running custom code on
programmable switches is hard, while understanding how
to resolve write conflicts is relatively easy. We would
like to design a generic interface for developers to re-
solve write conflicts, and orchestrate in-flight RDMA op-
erations in an application-independent fashion, perhaps as
part of a larger disaggregated computing framework or
operating system [21].

Indeed, such a system might further consider where to
deploy conflict-resolution logic. The advantage of using a

TOR is that all operations within a rack can be serialized.
However in many cases this degree of total ordering is not
required. For instance access to a single memory server
can be serialized by performing ordering on a NIC con-
nected to the end host. Our techniques could be built into
SmartNICs which would allow for them to scale arbitrar-
ily under the assumption that writes do not span multiple
remote memory machines.

References
[1] Intel tofino 2 p4 programmability with more bandwidth. https:

//www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/
tofino-2-series/tofino-2.html, 2020.

[2] AGUILERA, M., KEETON, K., NOVAKOVIC, S., AND SINGHAL,
S. Designing far memory data structures: Think outside the box.
In 17th Workshop on Hot Topics in Operating Systems (HotOS)
(May 2019), ACM.

[3] AGUILERA, M. K., AMIT, N., CALCIU, I., DEGUILLARD, X.,
GANDHI, J., NOVAKOVIĆ, S., RAMANATHAN, A., SUBRAH-
MANYAM, P., SURESH, L., TATI, K., VENKATASUBRAMANIAN,
R., AND WEI, M. Remote regions: a simple abstraction for remote
memory. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18) (Boston, MA, July 2018), USENIX Association, pp. 775–
787.

[4] AMARO, E., BRANNER-AUGMON, C., LUO, Z., OUSTERHOUT,
A., AGUILERA, M. K., PANDA, A., RATNASAMY, S., AND
SHENKER, S. Can far memory improve job throughput? In Pro-
ceedings of the Fifteenth European Conference on Computer Sys-
tems (New York, NY, USA, 2020), EuroSys ’20, Association for
Computing Machinery.

[5] ANGEL, S., NANAVATI, M., AND SEN, S. Disaggregation and
the application. In 12th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 20) (July 2020), USENIX Association.

[6] CARBONARI, A., AND BESCHASNIKH, I. Tolerating faults in dis-
aggregated datacenters. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (New York, NY, USA, 2017), HotNets-
XVI, Association for Computing Machinery, p. 164–170.

[7] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HOD-
SON, O. Farm: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 14)
(Seattle, WA, Apr. 2014), USENIX Association, pp. 401–414.

[8] FARABOSCHI, P., KEETON, K., MARSLAND, T., AND MILO-
JICIC, D. Beyond processor-centric operating systems. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV) (Kar-
tause Ittingen, Switzerland, 2015), USENIX Association.

[9] GAO, P. X., NARAYAN, A., KARANDIKAR, S., CARREIRA, J.,
HAN, S., AGARWAL, R., RATNASAMY, S., AND SHENKER,
S. Network requirements for resource disaggregation. In 12th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16) (Savannah, GA, Nov. 2016), USENIX Associa-
tion, pp. 249–264.

[10] GU, J., LEE, Y., ZHANG, Y., CHOWDHURY, M., AND SHIN,
K. G. Efficient memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17) (Boston, MA, Mar. 2017), USENIX Association,
pp. 649–667.

6



[11] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacenter
rpcs can be general and fast. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19) (Boston,
MA, Feb. 2019), USENIX Association, pp. 1–16.

[12] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
rdma efficiently for key-value services. SIGCOMM Comput. Com-
mun. Rev. 44, 4 (Aug. 2014), 295–306.

[13] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance RDMA systems. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16) (Denver, CO,
June 2016), USENIX Association, pp. 437–450.

[14] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-sided
(RDMA) datagram rpcs. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16) (Savannah,
GA, Nov. 2016), USENIX Association, pp. 185–201.

[15] MANSOUR, W., JANVIER, N., AND FAJARDO, P. Fpga imple-
mentation of rdma-based data acquisition system over 100-gb eth-
ernet. IEEE Transactions on Nuclear Science 66, 7 (Jul 2019),
1138–1143.

[16] MARUF, H. A., AND CHOWDHURY, M. Effectively prefetching
remote memory with leap. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20) (July 2020), USENIX Association,
pp. 843–857.

[17] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided RDMA
reads to build a fast, cpu-efficient key-value store. In 2013 USENIX

Annual Technical Conference (USENIX ATC 13) (San Jose, CA,
June 2013), USENIX Association, pp. 103–114.

[18] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S., AND
LI, J. Balancing CPU and network in the cell distributed b-tree
store. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16) (Denver, CO, June 2016), USENIX Association, pp. 451–
464.

[19] NOVAKOVIC, S., DAGLIS, A., BUGNION, E., FALSAFI, B., AND
GROT, B. Scale-out numa. In Proceedings of the 19th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2014),
ASPLOS ’14, Association for Computing Machinery, p. 3–18.

[20] NOVAKOVIC, S., SHAN, Y., KOLLI, A., CUI, M., ZHANG, Y.,
ERAN, H., LISS, L., WEI, M., TSAFRIR, D., AND AGUILERA,
M. K. Storm: a fast transactional dataplane for remote data struc-
tures. CoRR abs/1902.02411 (2019).

[21] SHAN, Y., HUANG, Y., CHEN, Y., AND ZHANG, Y. Legoos:
A disseminated, distributed OS for hardware resource disaggrega-
tion. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18) (Carlsbad, CA, 2018), USENIX
Association, pp. 69–87.

[22] TSAI, S.-Y., SHAN, Y., AND ZHANG, Y. Disaggregating per-
sistent memory and controlling them remotely: An exploration of
passive disaggregated key-value stores. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20) (July 2020), USENIX
Association, pp. 33–48.

7


